MatchPW {CMatching} | R Documentation |

This function implements preferential within-cluster matching. In other words, units that do not match within clusters (as defined by the `Group`

variable) can match between cluster in the second step.

MatchPW(Y = NULL, Tr, X, Group = NULL, estimand = "ATT", M = 1, exact = NULL, caliper = 0.25, replace = TRUE, ties = TRUE, weights = NULL, ...)

`Y` |
A vector containing the outcome of interest. |

`Tr` |
A vector indicating the treated and control units. |

`X` |
A matrix of covariates we wish to match on. This matrix should contain all confounders or the propensity score or a combination of both. |

`Group` |
A vector describing the clustering structure (typically the cluster ID). This can be any numeric vector of the same length of |

`estimand` |
The causal estimand desired, one of "ATE", "ATT" and "ATC", which stand for Average Treatment Effect, Average Treatment effect on the Treated and on the Controls, respectively. Default is "ATT". |

`M` |
The number of matches which are sought for each unit. Default is 1 ("one-to-one matching"). |

`exact` |
An indicator for whether exact matching on the variables contained in |

`caliper` |
A maximum allowed distance for matching units. Units for which no match was found within caliper distance are discarded. Default is 0.25. The caliper is interpreted in standard deviation units of the |

`replace` |
Default is TRUE. From version 2.3 this parameter can be set to FALSE. Assuming ATT this means that controls matched within cannot be matched between (i.e. in the second step). However note that, even when replace is set to FALSE, controls can be re-used during match between. |

`ties` |
An indicator for dealing with multiple matches. If more than M matches are found for each unit the additional matches are a) wholly retained with equal weights if ties=TRUE; b) a random one is chosen if ties=FALSE. Default is TRUE. |

`weights` |
A vector of observation specific weights. |

`...` |
Please note that all additional arguments of the |

The function performs preferential within-cluster matching in the clusters defined by the variable `Group`

. In the first phase matching within clusters is performed (see `MatchW`

) and in the second the unmatched treated (or controls if estimand="ATC") are matched with all controls (treated) units. This can be helpful to avoid dropping many units in small clusters.

`index.control` |
The index of control observations in the matched dataset. |

`index.treated` |
The index of control observations in the matched dataset. |

`index.dropped` |
The index of dropped observations due to the exact or caliper option. Note that these observations are treated if estimand is "ATT", controls if "ATC". |

`est` |
The causal estimate. This is provided only if |

`se` |
A model-based standard error for the causal estimand. This is a cluster robust estimator of the standard error for the linear model: |

`mdata` |
A list containing the matched datasets produced by |

`orig.treated.nobs.by.group` |
The original number of treated observations by group in the dataset. |

`orig.control.nobs.by.group` |
The original number of control observations by group in the dataset. |

`orig.dropped.nobs.by.group` |
The number of dropped observations by group after within cluster matching. |

`orig.dropped.nobs.by.group.after.pref.within` |
The number of dropped observations by group after preferential within group matching. |

`orig.nobs` |
The original number of observations in the dataset. |

`orig.wnobs` |
The original number of weighted observations in the dataset. |

`orig.treated.nobs` |
The original number of treated observations in the dataset. |

`orig.control.nobs` |
The original number of control observations in the dataset. |

`wnobs` |
the number of weighted observations in the matched dataset. |

`caliper` |
The caliper used. |

`intcaliper` |
The internal caliper used. |

`exact` |
The value of the exact argument. |

`ndrops.matches` |
The number of matches dropped either because of the caliper or exact option. |

`estimand` |
The estimand required. |

The function returns an object of class `CMatch`

. The `CMatchBalance`

function can be used to examine the covariate balance before and after matching. See the examples below.

Massimo Cannas <massimo.cannas@unica.it>

Sekhon, Jasjeet S. 2011. Multivariate and Propensity Score Matching Software with Automated Balance Optimization. *Journal of Statistical Software, 42(7): 1-52.* http://www.jstatsoft.org/v42/i07/

Arpino, B., and Cannas, M. (2016) Propensity score matching with clustered data. An application to the estimation of the impact of caesarean section on the Apgar score. *Statistics in Medicine, 35: 2074-2091* doi: 10.1002/sim.6880.

See also `Match`

,` MatchBalance`

data(schools) # Kreft and De Leeuw, Introducing Multilevel Modeling, Sage (1988). # The data set is the subsample of NELS-88 data consisting of 10 handpicked schools # from the 1003 schools in the full data set. # Let us consider the following variables: X<-schools$ses #X<-as.matrix(schools[,c("ses","white","public")]) Y<-schools$math Tr<-ifelse(schools$homework>1,1,0) Group<-schools$schid # Note that when Group is missing, NULL or there is only one Group the function # returns the output of the Match function with a warning. # Suppose that the effect of homeworks (Tr) on math score (Y) # is unconfounded conditional on X and other unobserved schools features. # Several strategies to handle unobserved group characteristics # are described in Arpino and Cannas, 2016 (see References). # Multivariate Matching on covariates in X # default parameters: one-to-one matching on X # with replacement with a caliper of 0.25; see also \code{Match}). ### Match preferentially within school # first match within schools # then (try to) match remaining units between schools mpw <- MatchPW(Y=schools$math, Tr=Tr, X=schools$ses, Group=schools$schid, caliper=0.1) # equivalent to # CMatch(type="pwithin",Y=schools$math, Tr=Tr, X=schools$ses, # Group=schools$schid, caliper=0.1) # examine covariate balance bmpw<- CMatchBalance(Tr~ses,data=schools,match.out=mpw) # proportion of matched observations (mpw$orig.treated.nobs-mpw$ndrops) / mpw$orig.treated.nobs # check drops by school mpw$orig.ndrops.by.group # proportion of matched observations after match-within only (mpw$orig.treated.nobs-sum(mpw$orig.ndrops.by.group.after.within)) / mpw$orig.treated.nobs # complete output mpw # or use summary method for main results summary(mpw) #### Propensity score matching # estimate the propensity score (ps) model mod <- glm(Tr~ses+parented+public+sex+race+urban, family=binomial(link="logit"),data=schools) eps <- fitted(mod) # eg 1: preferential within-school propensity score matching psmw <- MatchPW(Y=schools$math, Tr=Tr, X=eps, Group=schools$schid, caliper=0.1) # We can use other strategies for controlling unobserved cluster covariates # by using different specifications of ps (see Arpino and Mealli for details): # eg 2: standard propensity score matching using ps estimated # from a logit model with dummies for schools mod <- glm(Tr ~ ses + parented + public + sex + race + urban +schid - 1,family=binomial(link="logit"),data=schools) eps <- fitted(mod) dpsm <- MatchPW(Y=schools$math, Tr=Tr, X=eps, caliper=0.1) # this is equivalent to run Match with X=eps # eg3: standard propensity score matching using ps estimated from # multilevel logit model (random intercept at the school level) require(lme4) mod<-glmer(Tr ~ ses + parented + public + sex + race + urban + (1|schid), family=binomial(link="logit"), data=schools) eps <- fitted(mod) mpsm<-MatchPW(Y=schools$math, Tr=Tr, X=eps, Group=NULL, caliper=0.1) # this is equivalent to run Match with X=eps

[Package *CMatching* version 2.3.0 Index]